
The Weyl bundle as a differentiable manifold

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 5193

(http://iopscience.iop.org/0305-4470/38/23/008)

Download details:

IP Address: 171.66.16.92

The article was downloaded on 03/06/2010 at 03:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 5193–5216 doi:10.1088/0305-4470/38/23/008

The Weyl bundle as a differentiable manifold

Jaromir Tosiek

Institute of Physics, Technical University of Lodz, ul. Wolczanska 219, 93-005 Lodz, Poland

E-mail: tosiek@p.lodz.pl

Received 3 February 2005, in final form 30 March 2005
Published 25 May 2005
Online at stacks.iop.org/JPhysA/38/5193

Abstract
The construction of an infinite-dimensional differentiable manifold R

∞ not
modelled on any Banach space is proposed. Definition, metric and differential
structures of a Weyl algebra (P ∗

p M[[h̄]], ◦) and a Weyl algebra bundle
(P∗M[[h̄]], ◦) are presented. Continuity of the ◦-product in the Tichonov
topology is proved. Construction of the ∗-product of the Fedosov type in terms
of theory of connection in a fibre bundle is explained.

PACS numbers: 02.40.Hw, 03.65.Ca

1. Introduction

Deformation quantization was born twice. First the complete version of quantum mechanics in
the language of classical physics appeared in the middle of the previous century, when Moyal
[1] using works by Weyl [2], Wigner [3] and Groenewold [4] presented quantum mechanics
as a statistical theory. His results were only valid for the case of R2n.

For the second time deformation quantization appeared 30 years later. Ever since two
papers by Bayen et al [5] were published in 1978, a great interest in that version of quantum
mechanics has been observed.

One possible realizations of the deformation quantization programme is the so-called
Fedosov formalism [6, 7]. In its original version the Fedosov approach to quantum mechanics,
although based on the theory of connection in a bundle, is a purely algebraic construction. A
1-form of connection or a 2-form of curvature appear as objects belonging to some algebra
bundle and acting on elements from that bundle via commutators.

The presence of connection and curvature in Fedosov’s formalism framework suggests
that this topic may be treated in terms of differential geometry. As Fedosov machinery is a
part of quantum theory, its geometrization is a geometrization of deformation quantization.
Profits from such a treatment of a physical theory are obvious: one obtains a clear definition of
continuity, it is easy to represent the derivation in a form covariant under some transformations
etc. Since then we find it worth reformulating the Fedosov formalism in more geometrical
language. The current paper is one of two papers (see [8]) devoted to this problem.
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The main role in the Fedosov version of deformation quantization is played by a
Weyl bundle which is an infinite-dimensional differentiable manifold. Infinite-dimensional
differentiable manifolds have appeared in the development of physics several times. An
example of such a manifold is the Hilbert space of a quantum harmonic oscillator. But all
known infinite-dimensional differentiable manifolds are modelled on some Banach spaces
[9]. And the Weyl bundle is not normalizable. To avoid this fundamental obstacle we propose
a new look at an infinite-dimensional manifold and explain its deep physical origin. Our
considerations are related not only to deformation quantization. They can also be useful
in the theory of self-dual Yang–Mills (SDYM) equations for the ∗-bracket Lie algebra (see
[10, 11]).

In the second section we analyse a space of infinite real series R
∞. We equip it in a metric

and a topological structure showing that it is a Hausdorff space and also a Fréchet space. After
that we define an atlas on that space of infinite real series and explain how to extend it to a
complete atlas so we prove that R

∞ is a differentiable manifold. The space R
∞ appears as a

dual space to the vector space of polynomials with real coefficients.
The next part of our contribution is devoted to a Weyl algebra (P ∗

p M[[h̄]], ◦). We show
that this space is a metrizable complete space modelled on the differentiable manifold R

∞

introduced in the second section. At the end of this part we prove that the ◦-product is
continuous in the Tichonov topology.

The fourth section deals with the construction of a Weyl algebra bundle P∗M[[h̄]].
We show that the collection

⋃
p∈M P ∗Mp[[h̄]] of the Weyl algebras is really a differentiable

manifold and, moreover, is a vector bundle.
The fifth part of our contribution is devoted to the construction of connection in the Weyl

bundle. We start from a brief review of the theory of connection in vector bundles and after
that we introduce symplectic connection in P∗M[[h̄]]. In the last part of this paper, using that
symplectic connection, we propose an Abelian connection in P ∗

p M[[h̄]] and explain its role
in deformation quantization. In contrast to Fedosov we introduce both connections in terms
of differential geometry and show that the algebraic method proposed by Fedosov is a special
case (working only in Darboux atlases) of our more general treatment. Moreover, we prove
that the symplectic connection is the only induced connection on the Weyl bundle P∗M[[h̄]]
which can be expressed by the ◦-product.

In the appendix the proof of the relation between the position of an element of the Weyl
algebra and its indices is presented.

As this text concentrates on the differential aspect of the Weyl bundle we do not consider
its algebraic properties. Formal construction of the Weyl bundle as a bundle of elementary C∗

algebras is contained in [12].
Our paper was written by a physicist for physicists. This is the reason why we decided

to quote a lot of definitions and theorems which are well known to mathematicians. Another
reason is that even such fundamental ideas as a differentiable manifold or curvature are defined
in slightly different ways by different authors.

The bibliography of the Fedosov formalism and its applications is rather wide. Hence we
mention only works [13–19] which represent the geometrical trend in this subject.

The reader who finds the compendium of topology or differential geometry presented in
our paper unsatisfactory is recommended to look into [20–24]. Parts devoted to theory of fibre
bundles are based on [27, 28].

Finally a short comment about notation is needed. We use the Einstein summation
convention but in all formulae in which we find it necessary we put also the symbol �. For
example in the fifth section when in the same expression we have two or more sums in different
intervals we use symbols of summation.
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2. R
∞ as a differentiable manifold

In this section we introduce an infinite-dimensional differentiable manifold which is the natural
generalization of a space R

n, n ∈ N . Such an object will be required to analyse differential
properties of the Weyl bundle.

Let us start from the one-dimensional (1D) case. A pair (R, �) is a metric space with the
distance defined as

�(x, y)
def.= |x − y| for each x, y ∈ R. (2.1)

A set of balls

K(c, r) = {x ∈ R, |x − c| < r}, c ∈ R, r > 0,

determines the topology T on R so (R, T ) is a topological space.
Let us construct a space R

∞ as the infinite Cartesian product �∞
i=1Ri , where ∀iRi = R.

In the space R
∞ the topology �∞

i=1Ti is defined as follows.

Definition 2.1. [20] For each x = (x1, x2, . . .) ∈ R
∞ the topological basis of neighbourhoods

of the point x is all sets U = �∞
i=1Wi , where

Wi =
{

R for each i apart from the finite number of indices,
Uj (x

j ) for the rest of indices.

By Uj (x
j ) we mean an arbitrary 1D neighbourhood of xj ∈ R. The mapping

Pi : R
∞ → Ri

such that Pi(x) = xi is called a projection of R
∞ on Ri . The topology �∞

i=1Ti is known as the
Tichonov topology.

The Tichonov topology is the coarsest topology in which the projections Pi are continuous.
The Tichonov topology can also be introduced by a set of seminorms. The advantage

of this method is that R
∞ becomes in a natural way a Fréchet space. So to investigate its

properties we are able to use the powerful machinery of the theory of Fréchet spaces.

Definition 2.2. [22] Let V be a vector space over R. A mapping [| · |] : V → R is called a
seminorm if

1. ∀x∈V [|x|] � 0;
2. ∀x∈V ∀t∈R[|t · x|] = |t | · [|x|];
3. ∀x,y∈V [|x + y|] � [|x|] + [|y|].

An open ball in a seminorm [| · |] is a set of points such that

K(c, r) = {x ∈ V, [|x − c|] < r}, c ∈ V, r > 0. (2.2)

Let [| · |]i be a seminorm in a vector space R
∞ defined by

[| · |]i : R
∞ → Ri , [|x|]i def.= |xi |. (2.3)

A set of seminorms {[| · |]i}i∈N in R
∞ determines a topology on R

∞ in the following way.
A set U ∈ R

∞ is open in the topology compatible with seminorms {[| · |]i}i∈N if for every
x ∈ U there exists i1, . . . , ir ∈ N and ε > 0 such that

Ki1(x, ε) ∩ Ki2(x, ε) ∩ · · · ∩ Kir (x, ε) ⊂ U
i.e. each point of U belongs to an intersection of a finite number of balls contained in U. By
Kil (x, ε) we denote an open ball (2.2) in the seminorm [| · |]il .
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The topology determined by the set of seminorms {[| · |]i}i∈N is the same as the Tichonov
topology in R

∞ introduced before (see [20]).

Theorem 2.1. [22] A vector space V with topologyT defined by the set of seminorms {[|·|]z}z∈J

(J is countable or not) is the topological vector space (V , T ). It is also a Hausdorff space iff
the neutral element � ∈ V is the only vector such that ∀z∈J [|�|]z = 0.

Using the above theorem we conclude that the pair
(
R

∞,�∞
i=1Ti

)
is a Hausdorff space.

Definition 2.3. [22] A Hausdorff topological vector space (V , T ) is called pre-Fréchet if its
topology is given by a countable set of seminorms.

We see that the space
(
R

∞,�∞
i=1Ti

)
is a pre-Fréchet vector space. All pre-Fréchet spaces

are metrizable. The distance in
(
R

∞,�∞
i=1Ti

)
is defined as

�(x, y)
def.=

∞∑
i=1

1

2i

[|x − y|]i
1 + [|x − y|]i =

∞∑
i=1

1

2i

|xi − yi |
1 + |xi − yi | . (2.4)

Metric (2.4) constitutes the same topology as the set of seminorms (2.3).
There is no norm establishing metric (2.4). This conclusion is the straightforward

consequence of the fact that the maximal distance �(x, y) in metric (2.4) equals 1.

Definition 2.4. [22] A complete pre-Fréchet space is called a Fréchet space.

A theorem holds

Theorem 2.2. [20] Let (Vi, �i), i = 1, 2, . . . are metric spaces and let v = (v1, v2, . . .),
u = (u1, u2, . . .) ∈ �∞

i=1Vi and

�(v, u)
def.=

∞∑
i=1

1

2i

�i(vi, ui)

1 + �i(vi, ui)
. (2.5)

The metric space
(
�∞

i=1Vi, �
)

is complete iff all spaces (Vi, �i), i = 1, 2, . . . are complete.

The straightforward consequence of that theorem is the following.

Theorem 2.3. The pre-Fréchet space (R∞,�∞
i=1Ti ) is a Fréchet space.

Let us recall the definition of a differentiable manifold [20].

Definition 2.5. A differentiable n-dimensional manifold M of class Cr is a pair (M,A),
where M is a Hausdorff space and A = {(Uz, φz)}z∈J is a set of charts (Uz, φz) and

1. (Uz, φz)z∈J is an open covering of M and φz : Uz → Oz ⊂ R
n are homeomorphisms,

2. mappings

φzv
def.= φz ◦ φ−1

v : φv(Uz ∩ Uv) → φz(Uz ∩ Uv) (2.6)

are r-times continuously differentiable and they are called transition functions.

By Oz we denote open subsets of R
n.

Henceforth to shorten notation instead of writing
(
R

∞,�∞
i=1Ti

)
we will put R

∞.
The main problem in a proof that the space R

∞ is some differentiable manifold is the fact
that R

∞ is not a Banach space. To show that despite this obstacle R
∞ may be treated as a

differentiable manifold we propose the following consideration.
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1. Each element of the vector space R
∞ can be represented uniquely as an infinite series of

real numbers (x1, x2, . . .). This suggests that there exist atlases on R
∞ containing only

one chart (R∞, φ) in which numbers xi, i = 1, 2, . . . are coordinates of an arbitrary fixed
point on R

∞.
2. From physical reasons which will be explained in the next section, it is sufficient to

restrict our considerations to the atlas A = {(R∞, φz)}z∈J on R
∞ such that each chart

(R∞, φz) ∈ A covers the whole space R
∞ and moreover all mappings

φzv = φz ◦ φ−1
v : R

∞ → R
∞

are linear bijections. The set of indices J can be finite, countable or uncountable. Each of
bijections φzv(x

1, . . . , xi, . . .) = (y1, . . . , yi, . . .) may be written in the following form:

y1 = a11x
1 + a12x

2 + · · ·
...

. . .

yi = ai1x
1 + ai2x

2 + · · ·
...

. . .

(2.7)

where ∀i,j∈N aij ∈ R. To ensure convergence of sums standing at the right-hand side
of the infinite system of equations (2.7) we require that for each index ‘i’ only the finite
number of coefficients aij is different from 0. This condition holds for every mapping φzv

so especially it is true also for the transformation (y1, . . . , yi, . . .) −→ (x1, . . . , xi, . . .)

inverse to (2.7).
3. Although the general definition of the derivative of the mapping φzv does not exist because

of the lack of a norm in R
∞ we can precisely define partial derivatives

∂yi

∂xj

def.= lim
d→0

yi(x1, . . . , xj + d, . . .) − yi(x1, . . . , xj , . . .)

d

(2.7)= aij . (2.8)

In this infinite-dimensional case we assume that the existence of all partial derivatives ∂yi

∂xj

and ∂xj

∂yi (the proof for the inverse mapping is analogous) of an arbitrary range is sufficient
to treat the mapping φzv as C∞-differentiable.

4. A set of linear finite transformations of the form (2.7) constitutes a pseudogroup of
transformations � (see [24]). The atlas A = {(R∞, φz)}z∈J is compatible with the
pseudogroup �. Since each atlas compatible with some subgroup is contained in a unique
complete atlas of a manifold, starting from the atlas {(R∞, φz)}z∈J and the pseudogroup
� we point out the complete atlas on R

∞.

From the construction presented in this section we conclude that R
∞ is really the differentiable

manifold of a class C∞.

3. The Weyl algebra

In this section we define and analyse some properties of a Weyl algebra. The method presented
here is based on physical interpretation of this algebra. It is purely geometric in contrast to
algebraic way proposed by Fedosov [6, 7]. We construct the Weyl algebra by a symmetric
tensor product of spaces cotangent to some manifold.

Let (M, ω) be a 2n− D symplectic manifold, T ∗
p M is the cotangent space to M at a point

p of M and A = {(Uz, φz)}z∈J an atlas on M.
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Definition 3.1. The space (T ∗
p M)l, l � 1 is a symmetrized tensor product of

T ∗
p M 	 · · · 	 T ∗

p M︸ ︷︷ ︸
l−times

. It is spanned by

vK1 	 · · · 	 vKl

def.= 1

l!

∑
all permutations

vσK1 ⊗ · · · ⊗ vσKl , (3.9)

where vK1 , . . . , vKl ∈ T ∗
p M . For l = 0 we put (T ∗

p M)0 def.= R.

Each element v ∈ (T ∗
p M)l in a chart (Uz, φz) � p is uniquely represented by a sequence

v = (
v1...1, . . . , vi1...il , . . . , v2n...2n

)
. (3.10)

For indices the relation holds i1 � i2 � · · · � il−1 � il . The number of elements of the
sequence (3.10) is equal to (2n+l−1)!

(2n−1)! l! . This is the straightforward consequence of the fact that

m∑
k1=1

m∑
k2=k1

. . .

m∑
kl=kl−1︸ ︷︷ ︸

l−times

1 = (m + l − 1)!

l!(m − 1)!
. (3.11)

Introducing the distance �l(v, u) between two elements of (T ∗
p M)l as

�l(v, u)
def.=

{|v − u| for l = 0,∑
all i1�i2�···�il−1�il

|vi1i2···il−1il − ui1i2···il−1il | for l > 0,
(3.12)

we define a metric structure in (T ∗
p M)l . The distance between v and u depends on the choice

of the system of coordinates on the manifold M.
A set of balls

Kl(v, r) = {u ∈ (T ∗
p M)l, �l(v, u) < r}, v ∈ (T ∗

p M)l, r > 0 (3.13)

introduces a topology Tl on (T ∗
p M)l so ((T ∗

p M)l, Tl ) is a topological space. Although the
distance �l(v, u) depends on the choice of a chart on the manifold M, the topology Tl is
independent of it. This conclusion becomes obvious if we note that the topology defined by
open balls (3.13) is the same as the topology established by cubes

|v1...1 − u1...1| × · · · × |v2n...2n − u2n...2n|.
Moreover ((T ∗

p M)l, Tl ) is a complete vector space. It is also a differentiable manifold

modelled on a Banach space (R
(2n+l−1)!
(2n−1)!l! , ‖ · ‖) with a norm

‖x‖ def.=
(2n+l−1)!
(2n−1)! l!∑

i=1

|xi |.

Definition 3.2. A preWeyl vector space P ∗
p M at a point p ∈ M is the direct sum

P ∗
p M

def.=
∞⊕
l=0

((T ∗
p M)l ⊕ (T ∗

p M)l).

Beside
⊕∞

l=0 also another direct sum appears because components of tensors which are
used in physics are in general complex numbers. The preWeyl vector space is a topological
space with the Tichonov topology. Construction of a metric and topology is analogous to that



The Weyl bundle as a differentiable manifold 5199

presented in the previous section.

�(v, u)
def.=

∞∑
l=0

(
1

2l+2

�l(Re(v), Re(u))

1 + �l(Re(v), Re(u))
+

1

2l+2

�l(Im(v), Im(u))

1 + �l(Im(v), Im(u))

)
(3.14)

for each v, u ∈ P ∗
p M . The distances �l(Re(v), Re(u)) and �l(Im(v), Im(u)) are computed

between real and imaginary parts of components of v, u belonging to (T ∗
p M)l ⊕ (T ∗

p M)l .
Again, although metric (3.14) depends on the choice of a chart on M, the Tichonov topology
on P ∗

p M is independent of it.
Due to theorem 2.2 the preWeyl space is also a Fréchet space.

Definition 3.3. [14] Let λ be a fixed real number and V some vector space. A formal series
in the formal parameter λ is every expression of the form

v[[λ]] =
∞∑

K=0

λKvK, where ∀KvK ∈ V. (3.15)

The set of formal series v[[λ]] constitutes a vector space.

Addition means vector summation of elements of the same power of λ and multiplication
by a scalar a ∈ C is a multiplication of each vector standing on the right-hand side of (3.15)
by a, i.e.

u[[λ]] + v[[λ]] =
∞∑

K=0

λK(uK + vK) (3.16)

and

a · v[[λ]] =
∞∑

K=0

λK(avK). (3.17)

A vector space of formal series over the vector space V in the formal parameter λ we will
denote by V [[λ]]. The space V [[λ]] may be treated as a direct sum

V [[λ]] =
∞⊕
i=0

Vi, Vi = V for every i. (3.18)

We introduce the formal series over the preWeyl vector space as follows.

Definition 3.4. A Weyl vector space P ∗
p M[[h̄]] is the vector space over the preWeyl vector

space P ∗
p M in the formal parameter h̄.

For physical applications we usually identify the parameter h̄ with the Planck constant.
Terms standing at the kth power of h̄k and belonging to the direct sum (T ∗

p M)l ⊕ (T ∗
p M)l we

will denote by v[k, l]. Now each element of P ∗
p M[[h̄]] may be written in the form

v =
∞∑

k=0

∞∑
l=0

h̄kv[k, l]. (3.19)

For l = 0 we put
∑∞

k=0 h̄kv[k, 0], v[k, 0] ∈ C. Again using the Tichonov procedure we
equip the Weyl space with a topological structure. The Weyl space is a Fréchet space (see
theorem 2.2) with the metric

�(u, v)
def.=

∞∑
k=0

1

2k+1

�k(u, v)

1 + �k(u, v)
, (3.20)

where by �k(u, v) we understand the distance (3.14) computed between parts of u and v

standing at h̄k .
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Definition 3.5. [7] The degree deg(v[k, l]) of the component v[k, l] of the Weyl vector space
P ∗
p M[[h̄]] is the sum 2k + l.

At the beginning of this paragraph we propose the following convention—coordinates
of a vector v[k, l] we will denote by v[k, l]i1...il . To show that P ∗

p M[[h̄]] is a differentiable
manifold first we introduce one chart (P ∗

p M[[h̄]], φ) covering the whole space. The mapping
φ is defined as follows:

φ(v) = (Re(v[0, 0]), Im(v[0, 0]), Re(v[0, 1]1), Im(v[0, 1]1), . . .). (3.21)

Let (φ(v))d denote the dth element of sequence (3.21). Elements in this sequence are ordered
according to the following rules:

1. deg(φ(v))d1 > deg(φ(v))d2 �⇒ d1 > d2.
2. For the same degree if the power of h̄ in (φ(v))d1 is higher than in (φ(v))d2 then d1 > d2.
3. For the same degree and power of h̄ we order elements as in (3.10) taking into account

the indices of a tensor.
4. For two terms of the same degree, the same power of h̄ and the same tensor indices the

real part precedes the imaginary one.

A formula connecting the position of v[k, l]i1...il in sequence (3.21) with indices k, i1 . . . il is
rather complicated. The reader may find it in the appendix.

The chart (P ∗
p M[[h̄]], φ) is determined by the choice of a chart on the symplectic manifold

M because numbers (φ(v))d are components of tensors in a natural basis given by coordinates
on M. Let us cover the Weyl space with an atlas A = {(Uz, φz)}z∈J consisting of all natural
charts. Each mapping φz satisfies the ordering rule (3.21) and covers the whole Weyl space.

1. ∀z∈J φz are homeomorphisms (P ∗
p M[[h̄]], φ) → R

∞.
2. Mappings φzv = φz ◦ φ−1

v : R
∞ → R

∞ are linear bijections of the kind (2.7).
Moreover, each arbitrary fixed element (φz(v))i depends linearly only on terms (φv(v))j
characterized by the same power of h̄, the same tensor range and belonging to the same
real or imaginary part of v. Thus we conclude that all partial derivatives ∂(φz(v))j

∂(φv(v))i
exist.

Moreover, for a fixed j only a finite number of those partial derivatives do not vanish.

Taking into account facts presented above we say that the Weyl space P ∗
p M[[h̄]] is a

differentiable manifold.
For physical reasons (see [7]) the Weyl space may be equipped with a structure of an

algebra. Let Xp ∈ TpM be some fixed vector from the space TpM tangent to M at a point
p. Components of Xp in the natural basis

{
∂

∂q1 , . . . ,
∂

∂q2n

}
we denote byXi

p. It is clear that for
every v[k, l] ∈ P ∗

p M[[h̄]] the acting

v[k, l](Xp, . . . , Xp︸ ︷︷ ︸
l−times

) = v[k, l]i1...ilX
i1
p · · · Xil

p

is a complex number and we can treat v[k, l](Xp, . . . , Xp︸ ︷︷ ︸
l−times

) as a polynomial of the lth degree

in components of the vector Xp.
Thus elements of the Weyl space P ∗

p M[[h̄]] are mappings

v(Xp) : R
2n → C[[h̄]],

v(Xp)
def.=

∞∑
k=0

∞∑
l=0

h̄kv[k, l]i1...ilX
i1
p · · · Xil

p .
(3.22)

A symbol C[[h̄]] denotes a space of formal series over C.
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Let us go to the definition of ◦-product in the Weyl space. By a derivative ∂v
∂Xi

p
we

understand the formal sum (ordered by powers of h̄k) of partial derivatives of polynomials
v[k, l]i1...ilX

i1
p · · · Xil

p . Derivation ∂
∂Xi

p
does not influence powers of h̄. The definition of

derivation presented here is formal because in the space C[[h̄]] a norm is not defined.

Definition 3.6. [7] The product ◦ : P ∗
p M[[h̄]] × P ∗

p M[[h̄]] → P ∗
p M[[h̄]] of two elements

v, u ∈ P ∗
p M[[h̄]] is such an element w ∈ P ∗

p M[[h̄]] that for each Xp ∈ TpM the equality
holds

w(Xp) = v(Xp) ◦ u(Xp)

def.=
∞∑
t=0

1

t!

(
ih̄

2

)t

ωi1j1 · · · ωit jt
∂ tv(Xp)

∂X
i1
p . . . ∂X

it
p

∂tu(Xp)

∂X
j1
p . . . ∂X

jt
p

. (3.23)

The pair (P ∗
p M[[h̄]], ◦) is a noncommutative associative algebra called the Weyl algebra.

By ωij we understand components of the tensor inverse to the symplectic form in a point p,
i.e. the relation holds

ωijωjk = δi
k.

Here we mention some properties of the ◦-product in (P ∗
p M[[h̄]], ◦). More information

can be found in [7, 8, 25]. It is worth emphasizing that the first of the presented properties
becomes clear thanks to our geometrical approach to the Weyl algebra.

1. The ◦-product is independent of the chart.
2. The ◦-multiplication is associative but nonAbelian.
3. ∀v,u∈(P ∗

p M[[h̄]],◦) the relation holds deg(v ◦ u) = deg(v) + deg(u).

Let us show the continuity of the ◦-product in the Tichonov topology in (P ∗
p M[[h̄]], ◦).

Analogous to formula (2.3) in an arbitrary fixed chart (P ∗
p M[[h̄]], φ) we introduce seminorms

as

∀v∈(P ∗
p M[[h̄]],◦)∀i∈N [|v|]i def.= |(φ(v))i |. (3.24)

Metric (3.20) is now expressed by seminorms {[| · |]i}i∈N as (compare with (2.4))

�(v, u) =
∞∑
i=1

1

2i

[|v − u|]i
1 + [|v − u|]i . (3.25)

Let us consider two sequences {vK}K∈N , {uJ}J∈N elements vK, uJ ∈ (P ∗
p M[[h̄]], ◦) such that

lim
K→∞

vK = lim
J→∞

uJ = �. (3.26)

This relation implies that for every i ∈ N
lim

K→∞
[|vK|]i = lim

J→∞
[|uJ|]i = 0. (3.27)

The ◦-product is continuous if for every two sequences {vK}K∈N , {uJ}J∈N fulfilling the
condition (3.26) and for every two a, b ∈ (P ∗

p M[[h̄]], ◦) the equality holds

lim
J,K→∞

((a + vK) ◦ (b + uJ)) = a ◦ b. (3.28)

Formula (3.28) is equivalent to the system of equations

lim
K→∞

vK ◦ b = �, (3.29)

lim
J→∞

a ◦ uJ = �, (3.30)
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lim
J,K→∞

vK ◦ uJ = �. (3.31)

Let us consider an element (vK ◦ b)[r, l]i1...il . Its degree equals 2r + l. From the definition of
the ◦-product (3.23) and its third property (look at previous page) we see that (vK ◦b)[r, l]i1...il

is a finite linear combination of components of vectors vK such that deg vK � 2r + l. Since
that for J → ∞ equality (3.29) holds. Using the same method we prove relations (3.30)
and (3.31).

4. The Weyl bundle

Until now we have worked with the Weyl algebra (P ∗Mp[[h̄]], ◦) at an arbitrary fixed point p
belonging to the symplectic manifold M. Now we are going to analyse a collection of Weyl
algebras taken for all points of M.

Definition 4.1. A Weyl bundle is a triplet (P∗M[[h̄]], π,M), where

P∗M[[h̄]]
def.=

⋃
p∈M

P ∗Mp[[h̄]] (4.32)

is a differentiable manifold called a total space, M is a base space and π : P∗M[[h̄]] → M
a projection.

Elements of the Weyl bundle P∗M[[h̄]] can be thought of as the pairs (p, v), where
v ∈ (P ∗Mp[[h̄]], ◦). The projection π assigns a point p to the pair (p, v).

The Weyl algebra (P ∗
p M[[h̄]], ◦) considered in the previous section is related to the point

p ∈ M. To define a fibre in the Weyl bundle P∗M[[h̄]] it is required to introduce the ◦-product
in the topological vector space R

∞. However, the explicit form of a product u ◦ v, where
u, v ∈ R

∞ are of form (3.21), is complicated and useless for practical purposes. But in fact it
is sufficient to be aware that the algebra (R∞, ◦) exists.

Definition 4.1 contains a statement that the Weyl bundle P∗M[[h̄]] is a C∞ differentiable
manifold. To prove this fact we define a topology on P∗M[[h̄]] first.

Let A = {(Uz, φz)}z∈J be an atlas on the M. By the definition

P ′ def.=
⋃
z∈J

(Uz × R
∞ × {z}) ⊂ M × R

∞ × J.

The set J is equipped with the discrete topology. The topology in M×R
∞ ×J is constructed

according to definition 2.1 so the Cartesian product M × R
∞ × J has a Tichonov topology.

Since
⋃

z∈J (Uz × R
∞ × {z}) is a subset of M × R

∞ × J , we equip it with the induced
topology.

Now in P ′ we establish the equivalence relation

(p, v, z) ∼ (p′, v′, d) iff (4.33)

1. p = p′,
2. v′ is the image of v in the mapping induced by the change of coordinates (Uz, φz) →

(Ud , φd) on M. It is important to remember that the tensor ωij also transforms under that
change of coordinates.

P∗M[[h̄]]
def.= P ′/∼ possesses the quotient topology so the Weyl bundle is a topological space.

Let us consider two projections:
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1. a canonical projection G : P ′ → P ′/∼ defined as

∀(p,v,z)∈P ′G((p, v, z)) = [(p, v, z)]. (4.34)

Since the topology on P∗M[[h̄]] is the quotient one, the canonical projection G and its
inverse G−1 are continuous mappings [21]. A symbol [·] denotes the equivalence class;

2. a projection L : P ′ → M fulfilling the equation

∀(p,v,z)∈P ′L((p, v, z)) = p. (4.35)

In the topology of a Cartesian product on M × R
∞ × J a projection Pr : M × R

∞ ×
J → M defined as

∀(p,v,z)∈M×R∞×J Pr((p, v, z)) = p

is continuous from the definition of the Tichonov topology. The projection L is nothing
but Pr|P ′ and the topology on P ′ has been induced from M × R

∞ × J so the mapping L
is continuous.

Projections G and L preserve the point p so we can draw a commutative diagram

P ′ �
L

M
�

�
�

���

G

P∗M[[h̄]]
�

�
�

���
π

The mapping π
def.= L ◦ G−1 as a product of two continuous mappings is also continuous.

The equality holds

G(Uz × R
∞ × {z}) = π−1(Uz). (4.36)

Relation (4.36) constitutes a bijection between Uz × R
∞ × {z} and π−1(Uz). Moreover G and

G−1 are continuous mappings so we conclude that

G|Uz×R∞×{z} : Uz × R
∞ × {z} → π−1(Uz) (4.37)

is a homeomorphism.
The next step is to prove that P∗M[[h̄]] is a Hausdorff space. Let q1, q2 ∈ P∗M[[h̄]]

and π(q1) �= π(q2). The manifold M is a Hausdorff space so we can always choose two
neighbourhoods V1,V2 such that π(q1) ∈ V1, π(q2) ∈ V2 and V1 ∩ V2 = ∅.

Let us introduce the identification Id : Uz × R
∞ × {z} ∼= Uz × R

∞. Superposition of two
mappings

Id ◦ (G|Uz×R∞×{z}
)−1

: π−1(Uz) → Uz × R
∞ (4.38)

is a homeomorphism so π−1(V1) and π−1(V2) are neighbourhoods of q1, q2 respectively and,
moreover, π−1(V1) ∩ π−1(V2) = ∅.

In the case q1, q2 ∈ P∗M[[h̄]], q1 �= q2 and π(q1) = π(q2) we have q1, q2 ∈ π−1(Uz)

for some z ∈ J . But from the fact that (4.38) is a homeomorphism we conclude that π−1(Uz)

is a Hausdorff space so there exist separate neighbourhoods of q1 and q2.
So it has been proved that the Weyl bundle is a Hausdorff space.
The Cartesian product of the open subset Uz and the fibre R

∞ is homeomorphic to
Oz × R

∞, where Oz is an open subset of R
2n. We denote that homeomorphism by

ςz : Uz × R
∞ → Oz × R

∞. The mapping ςz is determined by a chart (Uz, φz). Namely

ςz(p, v) = (
φz(p), Tφz

(v)
)
. (4.39)
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The symbol Tφz
denotes taking the natural components of v. Remember that also the tensor

ωij from definition (3.23) transforms under ςz. The homeomorphism

ϕz : π−1(Uz) → Oz × R
∞,

ϕz
def.= ςz ◦ Id ◦ G−1

(4.40)

establishes a differential structure on the Weyl bundleP∗M[[h̄]]. Indeed an atlas onP∗M[[h̄]]
is the set of charts {(π−1(Uz), ϕz)}z∈J . Mappings ϕz ◦ ϕ−1

v are transition functions and they
are C∞-differentiable in a sense that all of their partial derivatives exist.

Thus we conclude that P∗M[[h̄]] is a C∞-class infinite-dimensional differentiable
manifold.

The Weyl bundle is an example of a vector bundle. Apart from elements described above
the definition of a vector bundle (for details see [23]) consists of a structure group G being a
Lie group and local trivializations.

If by GL(2n, R) we denote the group of real automorphisms of the cotangent space T ∗
p M ,

the structure group of the fibre is

G def.=
∞⊕

z=0

[ z
2 ]⊕

k=0


GL(2n, R) ⊗ · · · ⊗ GL(2n, R)︸ ︷︷ ︸

(z−2k)-times

⊕ GL(2n, R) ⊗ · · · ⊗ GL(2n, R)︸ ︷︷ ︸
(z−2k)-times


 . (4.41)

Moreover, when the element vi1i2 transforms under the element g ∈ GL(2n, R) ⊗ GL(2n, R)

then ωij transforms under g−1 ∈ GL(2n, R) ⊗ GL(2n, R).
Mappings Id ◦ (G|Uz×R∞×{z})−1 (see (4.37)) are local trivializations of the Weyl bundle

because they map π−1(Uz) onto the direct product Uz × R
∞.

Since the fibre R
∞ is not only a vector space but also an algebra, the Weyl bundle is an

example of the algebra bundle.
Knowing that the Weyl bundle is a differentiable manifold we can easily define smooth

sections of it or introduce a parallel transport on P∗M[[h̄]]. Physical application of these
quantities will be explained in the last part of our contribution.

5. Connections in the Weyl bundle

Now we are ready to present the construction of a connection in the Weyl bundle. This
construction plays crucial role in physical applications of mathematics contained in our
contribution. As before we begin with some general definitions and later apply them to
the Weyl algebra bundle.

Definition 5.2. [27] Suppose (E, π,M) is a vector bundle over a manifold M and C∞(E) is
a set of smooth sections of E over M. An exterior covariant derivative on the bundle (E, π,M)

is a map

∂̃ : C∞(E) −→ C∞(T ∗M ⊗ E),

which satisfies the following conditions:

1. for any u, v ∈ C∞(E)

∂̃(u + v) = ∂̃(u) + ∂̃(v), (5.42)

2. for any v ∈ C∞(E) and any f ∈ C∞(M)

∂̃(f v) = df ⊗ v + f · ∂̃v. (5.43)
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Remarks

1. The map ∂̃ is also called a connection (see [6, 7, 27, 28]). We keep the convention used
in our earlier papers and by ‘connection’ understand only a form determining exterior
covariant derivative of a local frame field (see formula (5.51)).

2. By T ∗M the cotangent bundle over the manifold M is denoted.

Let us introduce a new symbol. �p(M) is a bundle of p-forms over M. Smooth sections
of the tensor product E ⊗ �p(M) are known as p-forms on M of values in E or E-valued
p-forms. Since C∞(E ⊗ �p(M)) is a module over C∞(M), there is a module isomorphism
([28])

C∞(E) ⊗ C∞(�p(M)) −→ C∞(E ⊗ �p(M)) (5.44)

which we shall denote by v ⊗ f → f · v or simply f v. It means the second condition from
definition 5.2 takes the form

∂̃(f v) = df · v + f · ∂̃v. (5.45)

We are ready to find a more ‘operational’ form of the map ∂̃ . Let a system of vectors
e1, e2, . . . , eg (in general an infinite one) constitute a basis of the fibre Ep at a point p ∈ M.
Suppose that a matrix of base vectors is given by

e = [e1e2 . . . eg]. (5.46)

Moreover let

A =




a1
1 a1

2 . . . a1
g

a2
1 a2

2 . . . a2
g

...
...

. . .
...

a
g

1 a
g

2 . . . a
g
g


 (5.47)

be a nonsingular real matrix. In the case when g = ∞ it is supposed that in each row only a
finite number of terms is different from 0. The same assumption is true for the inverse matrix
A−1. Each system of versors e′ such that

e′ = e · A (5.48)

is also a basis of Ep. A vector v ∈ Ep in the basis e is represented by the 1-column matrix

v =




v1

v2

...

vg


 . (5.49)

Under the linear map determined by the matrix A the transformation rule for v is given by the
formula

v′ = A−1 · v. (5.50)

Having given the basis e of the fibre at the point p we need to propagate it smoothly on
the whole neighbourhood p ∈ U ⊂ M of the point p. To do it we choose smooth sections
e1, e2, . . . , eg of the bundle E over U in such a manner that at each point q ∈ U ∀i ei|q = ei .
That set of sections constitutes a local frame field of E on U . At every point q ∈ U the system
of vectors dqj ⊗ ei, 1 � j � 2n, 1 � i � g forms a basis of T ∗

p M ⊗ E. Since an exterior
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covariant derivative Dei is a local section of T ∗M ⊗ E, we can write

∂̃ei =
2n∑

j=1

g∑
k=1

�k
ij dqj ⊗ ek. (5.51)

Coefficients �k
ij are smooth real functions on U and they are called connection coefficients on

E over U . It is always possible to propagate a connection on the whole bundle (see [27]).
Introducing the connection matrix

�k
i

def.=
2n∑

j=1

�k
ij dqj , (5.52)

� =




� 1
1 � 1

2 . . .

� 2
1 � 2

2 . . .

...
...

. . .


 (5.53)

we see that

∂̃ei =
g∑

k=1

�k
i ⊗ ek

(5.44)=
g∑

k=1

�k
i ek

or, equivalently, in terms of matrices

∂̃e = � · e.

It means that the exterior covariant derivative of a section v ∈ C∞(E) over U equals

∂̃v = D

(
g∑

i=1

viei

)
(5.42),(5.43)=

g∑
i=1

dvi ⊗ ei +
g∑

i,k=1

vi�k
i ⊗ ek

(5.44)=
g∑

i=1

dviei +
g∑

i,k=1

vi�k
i ek. (5.54)

As can be proved [28], the connection matrix � transforms according to the rule

� ′ = A−1 dA + A−1�A. (5.55)

Till now we were able to differentiate only vectors from the bundle E. But it is possible to
extend the operation ∂̃ to p-forms with values in E.

Theorem 5.1 [28]. There is a unique operator

∂ : C∞(E ⊗ �p(M)) −→ C∞(E ⊗ �p+1(M))

satisfying

1. for all f ∈ C∞(�q(M)), v ∈ C∞(E ⊗ �p(M))

∂(f ∧ v) = df ∧ v + (−1)qf ∧ ∂v, (5.56)

2. for v ∈ C∞(E)

∂̃v = ∂v. (5.57)
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It is easy to check that for vi ∈ C∞(�p(M)) and ei ∈ C∞(E)

∂v = ∂

(
g∑

i=1

viei

)
=

g∑
i=1


dvi +

g∑
j=1

�i
j ∧ vj


 ei,

what is usually written as

∂v = dv + � ∧ v. (5.58)

This defines a sequence of mappings

C∞(E)
∂−→ C∞(E ⊗ �(M))

∂−→ C∞(E ⊗ �2(M))
∂−→ · · ·

Let us consider the second exterior covariant derivative

∂2 : C∞(E) −→ C∞(E ⊗ �2(M)).

After short computations we see that

∂2v =
g∑

i=1


 g∑

j=1

d�i
j ∧ vj +

g∑
j,k=1

�i
k ∧ �k

j ∧ vj


 ei

or in a compact form

∂2v = (d� + � ∧ �) ∧ v. (5.59)

Definition 5.3. The curvature of the connection � on the vector bundle (E, π,M) is a 2-form

R def.= d� + � ∧ �. (5.60)

The transformation rule for curvature under the linear transformation (5.47) is expressed
by a formula

R′ = A−1 · R · A. (5.61)

The curvature matrix

Ri
j

def.= d�i
j + �i

r ∧ �r
j = 1

2Ri
jkl dqk ∧ dql, (5.62)

where

Ri
jkl

def.= ∂�i
jl

∂qk
− ∂�i

jk

∂ql
+ �i

rl�
r
jk − �i

rk�
r
jl (5.63)

is a curvature tensor of the connection determined by coefficients �i
jk .

At the end of this introduction devoted to the general theory of connection in fibre bundles
we recall procedures defining induced connections on tensor products of bundles, direct sums
of bundles and a dual bundle.

Definition 5.4. Assume that two exterior covariant derivatives (denoted by the same symbol
∂) in two vector bundles E1 and E2 are given. The induced exterior covariant derivatives on
E1 ⊗ E2 and E1 ⊕ E2 are determined by rules

∂(v1 ⊗ v2) = ∂v1 ⊗ v2 + v1 ⊗ ∂v2, (5.64)

∂(v1 ⊕ v2) = ∂v1 ⊕ ∂v2 (5.65)

for v1 ∈ E1, v2 ∈ E2.
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Definition 5.5. Suppose v ∈ C∞(E), v∗ ∈ C∞(E∗) and the pairing 〈v, v∗〉 ∈ C∞(M). The
induced exterior covariant derivative on E∗ is determined by the relation

d〈v, v∗〉 = 〈∂v, v∗〉 + 〈v, ∂v∗〉. (5.66)

Relations (5.64)–(5.66) contain of course the recipe for building induced connections on
E1 ⊗ E2, E1 ⊕ E2 and E∗ respectively.

After that introduction we come back to the Weyl bundle and present constructions of two
connections: one symplectic and one Abelian on the Weyl bundle P∗M[[h̄]]. Both of these
connections play a crucial role in the definition of the ∗-product on a symplectic manifold M.
As before we assume that dimM = 2n.

From the Darboux theorem (see [26]) for each point p on a symplectic manifold M there
exists a chart (Uz, φz) such that p ∈ Uz and on Uz in local coordinates (q1, . . . , q2n) determined
by φz the symplectic form equals

ω = dqn+1 ∧ dq1 + . . . + dq2n ∧ dqn.

A chart (Uz, φz) is called a Darboux chart. A set of C∞ compatible Darboux charts covering
the whole manifold A = {(Uz, φz)}z∈J constitutes a Darboux atlas on M.

Suppose that on the tangent bundleT M a torsion-free connection is done. This connection
� is locally determined by sets of smooth real functions �k

ij , 1 � i, j, k � 2n. Using formulae
(5.66) and (5.65) we extend � easily on the bundle T ∗M ⊗ T ∗M.

Definition 5.6. A torsion-free connection � on the symplectic manifoldM is called symplectic
if at each point of M

∂ω = 0. (5.67)

It can be proved [8] that each symplectic manifold may be endowed with some symplectic
connection. In a Darboux chart coefficients of symplectic connection

�ijk
def.= ωli�

l
jk (5.68)

are symmetric in all the indices {i, j, k}. The matrix of symplectic connection

�i
j =

2n∑
k=1

�i
jk dqk.

A symplectic manifold equipped with a symplectic connection is often called a Fedosov
manifold.

Let us consider the collection

(T ∗M)l
def.=

⋃
p∈M

(T ∗
p M)l (5.69)

of spaces (T ∗
p M)l taken at all points of the symplectic manifold M. It is easy to note that this

collection is a vector bundle which we will denote by ((T ∗M)l, π,M). For l � 1 we are able
to introduce a local frame field on ((T ∗M)l, π,M)

ẽ1
def.= dq1 	 dq1 	 · · · 	 dq1︸ ︷︷ ︸

l−times

,

ẽ2

def.= dq1 	 dq1 	 . . . 	 dq2︸ ︷︷ ︸
l−times

,

...

ẽ (2n+l−1)!
l!(2n−1)!

def.= dq2n 	 dq2n 	 · · · 	 dq2n︸ ︷︷ ︸
l−times

.
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The relation between indices i1, . . . , il in the symmetric tensor product ẽk = dqi1 	 dqi2 	
· · · 	 dqil and the number k is given by the formula

k =
(

2n + l − 1
l

)
−

l∑
s=1

(
2n + s − il−s+1 − 1

s

)
. (5.70)

The proof of this fact is given in the appendix.
We look for the matrix of the induced connection on (T ∗M)l . From (5.64)

∂(dqi1 	 dqi2 	 · · · 	 dqil ) =
2n∑

j=1

l∑
r=1

−�
j

ir
dqj 	 dqi1 	 · · · 	 ˇdqir 	 · · · 	 dqil .

As usual the symbol ˇdqir denotes the omitted element.
Let us consider the kth row of a matrix l� representing the induced connection on (T ∗M)l .

We conclude that different from 0 may be only terms l�
m
k such that among l parameters ir

determining (via (5.70)) number m at least (l − 1) have been taken from the set i1, . . . , il .
Matrix l� is (2n+l−1)!

l!(2n−1)! × (2n+l−1)!
l!(2n−1)! dimensional.

The example. Given a connection matrix � on the tangent bundle T M assuming that
n = 1, l = 2. The local frame system of the bundle (T ∗M)2 contains three elements:
dq1 	 dq1, dq1 	 dq2 and dq2 	 dq2. The matrix of induced connection 2� on (T ∗M)2

looks like

2� =




−2� 1
1 −2� 2

1 0

−� 1
2 −� 1

1 − � 2
2 −� 2

1

0 −2� 2
1 −2� 2

2


 .

In section 3 analysing the construction of the Weyl vector space we showed that the order
of elements in formula (3.21) is determined by the degree, the power of h̄, indices of tensors
and finally the real or imaginary nature of the element. Using these facts we represent the
Weyl algebra bundle as a double direct sum

P∗M[[h̄]] =
∞⊕

z=0

[ z
2 ]⊕

k=0

((T ∗M)z−2k ⊕ (T ∗M)z−2k). (5.71)

The local frame field of the Weyl bundle P∗M[[h̄]] on U ⊂ M contains

e1
def.= î ⊕ θ ⊕ θ ⊕ · · · ,

e2
def.= θ ⊕ î ⊕ θ ⊕ · · · ,

e3
def.= θ ⊕ θ ⊕ dq1 ⊕ θ ⊕ · · · ,

e4
def.= θ ⊕ θ ⊕ θ ⊕ dq1 ⊕ · · · ,

...

The relation between an index a in ea and indices k, ii , . . . , il is expressed by formulae
(A.89) and (A.90) from the appendix. By î we understand a versor with unitary length on a
real line R. The letter θ denotes the neutral element in the vector space R.
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In the local frame field for a fixed even z the matrix of induced connection

z
�=




z� 0 . . . 0 0 0
0 z� . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1� 0 0
0 0 . . . 0 0 0
0 0 . . . 0 0 0




or, for odd z

z
�=




z� 0 . . . 0
0 z� . . . 0
...

...
. . .

...

0 0 . . . 1�


 .

Each matrix
z

� is a square even-dimensional matrix.
The matrix of induced connection on the Weyl bundle

� =




0 0 0 . . .

0
1

� 0 . . .

0 0
2

� . . .

...
...

...
. . .


 . (5.72)

In Darboux coordinates coefficients of the symplectic connection (5.68) are symmetric
in all indices, so we may express the exterior covariant derivative in terms of the ◦-product.
Indeed, let us introduce a connection 1-form as an element of C∞((T ∗M)2 ⊗ �1(M))

� = �[0, 2]ij,k dqk def.= �ij,k dqk.

Moreover,

Definition 5.7. The commutator of two smooth sections u ∈ C∞(P∗M[[h̄]] ⊗ �j1(M)) and
v ∈ C∞(P∗M[[h̄]] ⊗�j2(M)) is a smooth section of C∞(P∗M[[h̄]] ⊗�j1+j2(M)) such that

[u, v]
def.= u ◦ v − (−1)j1·j2v ◦ u. (5.73)

In further considerations we simplify a bit the notation by puttingP∗M[[h̄]]�(M) instead
of
∑2n

j=1 P∗M[[h̄]] ⊗ �j(M).

Theorem 5.2. In Darboux coordinates the exterior covariant derivative ∂v of v ∈
C∞(P∗M[[h̄]]�(M)) reads

∂v = dv +
1

ih̄
[�, v]. (5.74)

The reason why we restrict ourselves to Darboux charts is obvious —only in such charts
is the connection represented by a form with values in the Weyl algebra.

In the Fedosov paper [6] the above relation is just a definition of the exterior covariant
derivative in the Weyl bundle. We showed its geometrical origin.

From the fact that the exterior covariant derivative in the Weyl bundle can be put into
frames of the algebra structure, we deduce that also curvature of the symplectic connection
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may be defined in terms of P∗M[[h̄]]�(M). Indeed, curvature of the symplectic connection
� is a smooth section C∞(P∗M[[h̄]] ⊗ �2(M)) and can be written as

R = d� +
1

ih̄
� ◦ �. (5.75)

The action of R on a smooth section X of a tangent bundle T M is given by

R(X) = 1
4RijklX

iXj dqk ∧ dql,

where

Rijkl = ∂�ijl

∂qk
− ∂�ijk

∂ql
+ ωzu�zil�ujk − ωzu�zik�ujl . (5.76)

Thus the second exterior covariant derivative of v ∈ C∞(P∗M[[h̄]]�(M)) is described by a
formula

∂2v = 1

ih̄
[R, v]. (5.77)

6. The ∗-product on a symplectic manifold M

The crucial role in deformation quantization is played by a noncommutative nonAbelian
∗-product being a counterpart of the product of operators from Hilbert space formulation
of quantum theory. There is no unique way to introduce this product in the case when
the phase space of the system is different from R

2n. In this section we present briefly the
Fedosov construction of the ∗-product on a symplectic manifold (M, ω). We concentrate on
a geometric aspect of the problem omitting all technical proofs.

There exists infinitely many different connections in the bundle P∗M[[h̄]]�(M).
Especially important to our purposes is one of the so-called Abelian connections �̃.

Definition 6.8. A connection �̃ is called Abelian, if its curvature � is a 2-form with values in
the bundle

⊕∞
k=0

(
(T ∗M)0

k ⊕ (T ∗M)0
k

)⊗ �2(M).

In the definition we put (T ∗M)0
k = (T ∗M)0 for every k.

Since that for each v ∈ C∞(P∗M[[h̄]]�(M)) the second exterior covariant derivative D
determined by �̃ equals (compare (5.77))

D2v = 1

ih̄
[�, v] = 0. (6.78)

From among the set of Abelian connections especially important for physical applications is
that of the form

�̃(X)
def.= ωi,jX

i dqj + �i1i2,jX
i1Xi2 dqj + r. (6.79)

The term r ∈ P∗M[[h̄]] ⊗ �1(M), deg(r) � 3 is determined by some recurrential formula
(for details see [6, 7]) and it depends only on the symplectic curvature R. In this case

� = − 1
2ωj1j2 dqj1 ∧ dqj2 .

To avoid confusion which indices are of the Weyl bundle and which are of a differential form
we put in (6.79) the result of acting by �̃ on some arbitrary fixed vector field from the tangent
bundle T M.

It is easy to note that the component of the Abelian connection (6.79) with the degree z

acting on the form v ∈ P∗M[[h̄]]�(M) gives as a result the element u ∈ P∗M[[h̄]]�(M)

for which

deg(u) = deg(v) + z − 2.
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Since denoting by �̃
(deg(v))

(deg(u)) a part of the connection matrix � appearing as the result of the
presence of the Abelian connection �̃ we see that

�̃ =




0 0 0 . . .

�̃
(2)

(1)

1
� �̃

(2)

(3) . . .

0 �̃
(3)

(2)

2
� . . .

...
...

...
. . .


 (6.80)

(compare (5.72)). Note that the Abelian connection �̃ mixes up tensors of different ranges
and terms standing at different powers of the deformation parameter h̄.

What is interesting, the set of 0-forms belonging to P∗M[[h̄]] ⊗ �0(M), such that
Dv = 0, constitutes the subalgebra of the Weyl algebra P∗M[[h̄]]. We will denote this
subalgebra by P∗MD[[h̄]].

Definition 6.9. A projection

σ : P∗MD[[h̄]] ⊗ �0(M) −→
∞⊕

k=0

(
(T ∗M)0

k ⊕ (T ∗M)0
k

)
assigns to each section v ∈ P∗MD[[h̄]] ⊗ �0(M) its part σ(v) ∈ ⊕∞

k=0

(
(T ∗M)0

k ⊕
(T ∗M)0

k

)
.

It has been proved (see [6, 7]) that for each f ∈ C∞ (⊕∞
k=0((T ∗M)0

k ⊕ (T ∗M)0
k)
)

there
exists a unique smooth section v ∈ C∞(P∗MD[[h̄]] ⊗ �0(M)) such that σ(v) = f . We
arrive at the point crucial for physical applications of the mathematical machinery presented
above.

Definition 6.10. Let f1, f2 be two smooth sections of C∞ (⊕∞
k=0

(
(T ∗M)0

k ⊕ (T ∗M)0
k

))
. The

∗-product of them is defined as

f1 ∗ f2
def.= σ

(
σ−1(f1) ◦ σ−1(f2)

)
. (6.81)

This ∗-product defined here can be considered as a generalization of the Moyal product of the
Weyl type defined for M = R

2n. It has the following properties:

1. The definition of ∗-product is invariant under Darboux transformations. Hence we can
multiply functions on an arbitrary symplectic manifold. In the case of the Moyal product
of the Weyl type we are restricted to the symplectic manifold R

2n and Darboux coordinates
with vanishing 1-form of a symplectic connection � = 0. In fact we could extend the
definition of ∗-product on an arbitrary atlas on the symplectic manifold M, but in such
a case it would be necessary to modify recurrential formulae for the term r in (6.79) and
for σ−1.

2. In the limit h̄ → 0+ the ∗-product of f1, f2 ∈ C∞ (
(T ∗M)0

0 ⊕ (T ∗M)0
0

)
turns into the

commutative point-wise multiplication of functions, i.e.

lim
h̄→0+

f1 ∗ f2 = f1 · f2. (6.82)

This relation expresses the fact that the classical mechanics is a limit of quantum physics
for the Planck constant tending to 0+.
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3. Multiplication (6.81) is associative but noncommutative. The noncommutativity of two
smooth sections f1, f2 ∈ C∞ (⊕∞

k=0

(
(T ∗M)0

k ⊕ (T ∗M)0
k

))
is measured by their Moyal

bracket

{f1, f2}M def.= 1

ih̄
(f1 ∗ f2 − f2 ∗ f1)

which plays a role of commutator from standard formulation of quantum mechanics on
Hilbert space.

4. When M = R
2n the product defined above is just the Moyal product of Weyl type. This

fact confirms consistency of the Fedosov approach with the best known case of quantum
deformation.

Some computations done with the ∗-product (6.81) can be found in [8].
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Appendix. Position of the element v[k, l]i1...il
in the series (3.21)

In this appendix we shall explain the relation between indices k, i1, . . . il of an element
v[k, l]i1...il of the Weyl algebra and its position in the series

φ(v) = (Re(v[0, 0]), Im(v[0, 0]), Re(v[0, 1]1), Im(v[0, 1]1), . . .)

representing a vector v of the Weyl space P ∗
p M[[h̄]]. Formulae proved in this appendix are

also useful in further considerations on the construction of a local frame field in the Weyl
bundle.

We will achieve our aim in four steps.

1. At the beginning we find the place P1 of v[k, l]i1...il among elements with the same k and
l.

2. After that we consider the relation between a power k of h̄ and the position P2 for elements
with the same degree 2k + l.

3. In the third step we include the influence of the degree on the position P3.
4. Finally we present the complete formula expressing the relation between the real and

imaginary part of v[k, l]i1...il and its position P in (3.21).

Let us start from the case when k is fixed and l � 1. We look for the position of v[k, l]i1...il

in the series of real elements parametrizing by the same k and l. Elements are ordered according
to the rule valid for relation (3.10). The position P1(v[k, l]i1...il ) of v[k, l]i1...il in that series
equals
i1−1∑
z1=1

2n∑
z2=z1

. . .

2n∑
zl=zl−1

1 +
i2−1∑
z2=i1

2n∑
z3=z2

. . .

2n∑
zl=zl−1

1 + · · · +
il−1−1∑

zl−1=il−2

2n∑
zl=zl−1

1 +
il∑

zl=il−1

1

=
i1−1∑
z1=1

2n∑
z2=z1

. . .

2n∑
zl=zl−1

1 +
i2−i1∑
z2=1

2n−i1+1∑
z3=z2

. . .

2n−i1+1∑
zl=zl−1

1

+ · · · +
il−1−il−2∑
zl−1=1

2n−il−2+1∑
zl=zl−1

1 +
il−il−1+1∑

zl=1

1. (A.83)
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Let us consider the following expression:
m∑

z1=1

m∑
z2=z1

. . .

m∑
zl=zl−1

1 =
a∑

z1=1

m∑
z2=z1

. . .

m∑
zl=zl−1

1 +
m∑

z1=a+1

m∑
z2=z1

. . .

m∑
zl=zl−1

1

=
a∑

z1=1

m∑
z2=z1

. . .

m∑
zl=zl−1

1 +
m−a∑
z1=1

m−a∑
z2=z1

. . .

m−a∑
zl=zl−1

1

(3.11)=
a∑

z1=1

m∑
z2=z1

. . .

m∑
zl=zl−1

1 +
(m + l − a − 1)!

l!(m − a − 1)!
.

But from (3.11) we know that
∑m

z1=1

∑m
z2=z1

. . .
∑m

zl=zl−1
1 = (m+l−1)!

l!(m−1)! so

a∑
z1=1

m∑
z2=z1

. . .

m∑
zl=zl−1

1 = (m + l − 1)!

l!(m − 1)!
− (m + l − a − 1)!

l!(m − a − 1)!
. (A.84)

Relation (A.84) works also for l = 1. In this case the right-hand side of (A.84) is independent
of m and we see that

∑a
z1=1 = a. Substituting (A.84) into (A.83) we have

P1(v[k, l]i1...il ) = (2n + l − 1)!

l!(2n − 1)!
− (2n + l − i1)!

l!(2n − i1)!
+

(2n + l − i1 − 1)!

(l − 1)!(2n − i1)!

− (2n + l − i2 − 1)!

(l − 1)!(2n − i2)!
+ · · · +

(2n − il−2 + 2)!

2!(2n − il−2)!

− (2n − il−1 + 2)!

2!(2n − il−1)!
+ (il − il−1 + 1).

Putting together terms containing ilr we see that

P1(v[k, l]i1...il ) = (2n + l − 1)!

l!(2n − 1)!
− (2n + l − i1 − 1)!

l!(2n − i1 − 1)!
− · · · − (2n − il−1 + 1)!

2!(2n − il−1 − 1)!

− (2n − il)!

1!(2n − il − 1)!
.

Note that although

− (2n − il−1 + 1)!

2!(2n − il−1 − 1)!
= − (2n − il−1 + 2)!

2!(2n − il−1)!
− il−1 + 1 + 2n

and

− (2n − il)!

1!(2n − il − 1)!
= il − 2n

the sum

− (2n − il−1 + 1)!

2!(2n − il−1 − 1)!
− (2n − il)!

1!(2n − il − 1)!
= − (2n − il−1 + 2)!

2!(2n − il−1)!
− il−1 + 1 + il

as is required.
Finally we may write

P1
(
v[k, l]i1...il

) =
(

2n + l − 1
l

)
−

l∑
s=1

(
2n + s − il−s+1 − 1

s

)
. (A.85)

Note that the above relation is true also for scalars, i.e. when l = 0.
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In the next step we take into account the degree of v[k, l]i1...il . From definition 3.5 we see
that deg

(
v[k, l]i1...il

) = 2k + l. We denote it by d. The position P2
(
v[k, l]i1...il

)
of v[k, l]i1...il

among elements with the same degree is given by

P2(v[k, l]i1...il ) =
k−1∑
g=0

(
2n + d − 2g − 1

d − 2g

)
+ P1

(
v[k, l]i1...il

)

= −
(

2n + l − 1
l

)
3F2

({
1,

1

2
− l

2
,− l

2

}
,

{
1

2
− l

2
− n, 1 − l

2
− n

}
, 1

)

+

(
2n + 2k + l − 1

2k + l

)
3F2

({
1,−k − l

2
,

1

2
− l

2
− k

}
,{

1

2
− l

2
− k − n, 1 − l

2
− k − n

}
, 1

)
+ P1

(
v[k, l]i1...il

)
. (A.86)

By 3F2({a1, a2, a3}, {b1, b2}, x) we denote the generalized hypergeometric function (see [29]).
From (A.86) we obtain that the total number of real elements of the same degree d is

[ d
2 ]∑

g=0

(
2n + d − 2g − 1

d − 2g

)
=
(

2n + d − 1
d

)

× 3F2

({
1,

1

2
− d

2
,−d

2

}
,

{
1

2
− d

2
− n, 1 − d

2
− n

}
, 1

)
.

(A.87)

Since we conclude that

P3(v[k, l]i1...il ) = P2(v[k, l]i1...il )

+
d−1∑
c=0

(
2n + c − 1

c

)
3F2

({
1,

1

2
− c

2
,− c

2

}
,

{
1

2
− c

2
− n, 1 − c

2
− n

}
, 1

)

= P2(v[k, l]i1...il ) +




− 1

4n+1
−
(

2n + d + 1
d + 1

)
3F2

({
1, 1 +

d

2
+ n,

3

2
+

d

2
+ n

}
,{

1 +
d

2
,

3

2
+

d

2

}
, 1

)
for even d

− 1

4n+1
−
(

2n + d

d

)
3F2

({
1,

1

2
+

d

2
+ n, 1 +

d

2
+ n

}
,{

1

2
+

d

2
, 1 +

d

2

}
, 1

)
+

(
2n + d − 2

d − 1

)
3F2

({
1,

1

2
− d

2
, 1 − d

2

}
,{

1 − d

2
− n,

3

2
− d

2
− n

}
, 1

)
for odd d.

(A.88)

Finally we arrive at the result that the position of the element v[k, l]i1...il in the series (3.21) is
described by two relations

P
(
Re(v[k, l]i1...il )

) = 2P3
(
v[k, l]i1...il

)− 1 (A.89)

and

P
(
Im
(
v[k, l]i1...il

)) = 2P3
(
v[k, l]i1...il

)
. (A.90)

Mappings (A.89) and (A.90) are one-to-one so from the position of the element in series (3.21)
it is possible to reconstruct the sequence k, i1, . . . , il .
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